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SUMMARY

A numerical method based on radial basis function networks (RBFNs) for solving steady incompressible
viscous flow problems (including Boussinesq materials) is presented in this paper. The method uses a
‘universal approximator’ based on neural network methodology to represent the solutions. The method
is easy to implement and does not require any kind of ‘finite element-type’ discretization of the domain
and its boundary. Instead, two sets of random points distributed throughout the domain and on the
boundary are required. The first set defines the centres of the RBFNs and the second defines the
collocation points. The two sets of points can be different; however, experience shows that if the two sets
are the same better results are obtained. In this work the two sets are identical and hence commonly
referred to as the set of centres. Planar Poiseuille, driven cavity and natural convection flows are
simulated to verify the method. The numerical solutions obtained using only relatively low densities of
centres are in good agreement with analytical and benchmark solutions available in the literature. With
uniformly distributed centres, the method achieves Reynolds number Re=100 000 for the Poiseuille flow
(assuming that laminar flow can be maintained) using the density of 11×11, Re=400 for the driven
cavity flow with a density of 33×33 and Rayleigh number Ra=1 000 000 for the natural convection flow
with a density of 27×27. Copyright © 2001 John Wiley & Sons, Ltd.

KEY WORDS: mesh-free method; Navier–Stokes equations; radial basis function networks; streamfunc-
tion–vorticity formulation

1. INTRODUCTION

Continuum mechanics problems often lead to a set of partial differential equations (PDEs)
together with a set of boundary conditions. The finite difference method (FDM) (cf. Roache
[1], Smith [2]), the finite element method (FEM) (cf. Cook et al. [3], Fletcher [4], Hughes [5],
Reddy and Gartling [6], Zienkiewicz and Taylor [7]) and the finite volume method (FVM)
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(cf. Patankar [8]) are well established numerical methods to solve these equations. As the name
suggests, these methods rely on the discretization of the domain of analysis into a number of
‘finite elements’ (FEs) which are of standard ‘shape’, i.e. they are defined by a certain fixed
topology in terms of a number of nodes. The task of breaking the original domain of analysis
into a set of FEs is non-trivial due to the rigid structure required by this methodology. This
difficulty is particularly acute in three-dimensional problems or even in two-dimensional
problems with moving boundaries, free surfaces or complex boundaries. It is possible to devise
an alternative element-free method based on neural network methodology. Radial basis
function networks (RBFNs) have become one of the main fields of research in numerical
analysis (cf. Powell [9], Broomhead and Lowe [10], Poggio and Girosi [11], Haykin [12]).
Interest in RBFNs (especially ones based on multiquadric radial basis functions or MQRBF)
as numerical methods for solving PDEs has been increasing recently. The RBFN-based
methods require only a set of unstructured discrete collocation points to ‘discretize’ the
governing equations, which naturally offers the advantage of being mesh-free. Essentially, in a
typical RBFN-based method each of the relevant variables, such as u, is approximated in terms
of weighted RBFs (or neurons) which incorporate two adjustable parameters, namely the
centres and the widths, as follows:

u(x)= �
m

i=1

w (i )g (i )(x)

where {w (i )}i=1
m is the set of weights; {g (i )}i=1

m is the set of radial basis functions and m is the
number of centres. The basis functions contain the centre and width parameters. In the case of
self-organized networks, the centres and the widths are chosen in advance and hence the set of
original unknowns in the governing equations can be transformed into a set of unknown
weights of the RBFNs, which is to be found. When the RBFN representations of the variables
are substituted in the governing equations, which are collocated at random collocation points
as shown in Figure 1, a set of algebraic equations in terms of the RBFN weights is obtained.
The system matrix may or may not be square depending on particular formulations. The
present method generally results in a non-square system which is solved by a method based on
the general linear least square principles. It is important to note that the accuracy of the
RBFN solution is influenced by a parameter that is usually referred to as the width of basis
function. The value of this parameter controls the shape of the basis function or the response
of the associated neuron. Large or small values make the neuronal response too flat or too
peaked respectively, and therefore both of these two extreme conditions should be avoided. By
numerical experimentation, Kansa [13] found that the best results achieved by multiquadric
approximation scheme occurred when the shape (width) parameter a2 is varied according to
the following expansion:

a (i )2=amin
2 (amax

2 /amin
2 )(i−1)/(m−1) (1)

where amax
2 and amin

2 are input parameters, 1.0e1� (amax
2 /amin

2 )�1.0e6 (Moridis and Kansa
[14]); superscript (i ) indexes the ith centre and m is the number of centres. Based on formula
(1), Kansa [15], Dubal [16] and Sharan et al. [17] have applied the multiquadric approximation
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Figure 1. RBF centres and collocation points. Legends: �, RBF centre; *, collocation point. RBF
centres are regularly distributed for best results while collocation points can be random [18].

scheme successfully for the numerical solution of PDEs (Poisson equations). Recently, Mai-
Duy and Tran-Cong [18,19] have developed new methods based on RBFNs for approximat-
ing functions and demonstrated the capabilities of the methods with a solution of Poisson
equations. The so-called direct RBFN (DRBFN) and indirect RBFN (IRBFN) methods
were studied and it was found that the IRBFN method yields excellent results. In contrast
to the approach taken by other authors as reviewed above, in the present methods the
width of the ith neuron (centre) a (i ) is determined according to the following simple
relation (Moody and Darken [20]):

a (i )=�d (i ) (2)

where � is a factor, ��0 and d (i ) is the distance from the ith centre to the nearest
neighbouring centre. Relation (2) indicates that it is reasonable to assign a larger width
where the centres are widely separated from each other and a smaller width where the
centres are closer. The results obtained [18,19] show that the IRBFN method achieves a
better accuracy than the DRBFN method over a wide range of �. The practical choice of
RBF width a (i ) is much simpler with both of the above methods. In this paper the IRBFN
method is further developed to obtain numerical solutions of the Navier–Stokes equations.
The system of differential equations may be in terms of velocity and pressure, velocity and
vorticity or stream function and vorticity. However, for two-dimensional problems, numeri-
cal methods usually employ the streamfunction–vorticity formulation rather than the veloc-
ity–pressure formulation. The advantage of the streamfunction–vorticity formulation over
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the velocity–pressure formulation is that the number of variables is reduced to two and the
continuity equation is automatically satisfied. The streamfunction–vorticity formulation for
two-dimensional problems is considered here because of the lesser number of unknowns
involved and the principle of the proposed method is applicable to other formulations for two-
and three-dimensional problems. The paper is organized as follows. Firstly, the IRBFN
method is presented for steady viscous flows in Section 2 and then for natural convection
(Boussinesq approximation) flows in Section 3. Numerical examples of planar Poiseuille,
driven cavity and natural convection flows in a square slot are reported to illustrate the present
method. Finally, some concluding remarks are given in Section 4.

2. INCOMPRESSIBLE VISCOUS FLOW PROBLEMS

2.1. Go�erning equations

The Navier–Stokes equations for steady incompressible planar viscous flows, subject to
negligible body forces, are expressible in terms of the streamfunction � and the vorticity � as
follows:

�+ (�,11+�,22)=0, x�� (3)

�(�,11+�,22)=�,2�,1−�,1�,2, x�� (4)

where � is the kinematic viscosity; x is the position vector of a point in the analysis domain �;
�,i���/�xi ; �,ij��2�/�xi �xj and similarly for the partial derivatives of �.

The vorticity and streamfunction are defined by

�=u2,1−u1,2, x�� (5)

�,2=u1, �,1= −u2, x�� (6)

where u1 and u2 are the components of the velocity vector and ui, j��ui/�xj.
Let L be a characteristic length and U a characteristic speed of the flow, the variables are

non-dimensionlized as follows:

u �i=
ui

U
, x �i=

xi

L
, � �=

�

U/L
and � �=

�

UL
(7)

From here on, the primes are dropped for brevity. The dimensionless governing equations are

�+ (�,11+�,22)=0, x�� (8)

�,11+�,22=Re(�,2�,1−�,1�,2), x�� (9)
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where Re=UL/� is the Reynolds number. The streamfunction equation (8) is known as the
kinematic condition since it is simply the property of the flow field and does not depend on
what causes the flow. The vorticity transport equation (9) is known as the kinetic condition
since it is derived from the kinetics of motion; in this case, Newton’s second law and the
linear constitution equations. In the present method, the equations for � and � together
with boundary conditions are solved simultaneously to obtain the solution.

2.2. Boundary conditions

The general boundary conditions on the � are expressed in terms of the velocity as

�,1= −u20, �,2=u10, x�� (10)

where � is the boundary of the analysis domain �. On a non-porous wall, no-slip
boundary condition yields Dirichlet and Neumann boundary data as follows

�=0, �,n=�W, x�� (11)

where �W is the tangential wall velocity and n is the local direction normal to the wall.
Equations (8)– (11) are a complete specification of the problem to be solved.

2.3. Numerical formulation based on RBFNs

The basic derivation of the present RBFN method is given elsewhere [18,19]. Specifically, in
the present IRBFN highest-order derivatives are expressed in terms of RBFN first, followed
by successive symbolic integrations to obtain closed form expressions for lower-order
derivatives and finally the function(s) itself. For example

�,ii(x)= �
m

i=1

w (i )g (i )(x)

�,i(x)=
�

�,ii(x) dxi

� i(x)=
�

�,i(x) dxi

The closed form representations thus obtained are then substituted into the governing
equations and boundary conditions to ‘discretize’ the system via the mechanism of point
collocation [18]. The application of the method to the present problem, e.g. Equations (8)
and (9) with boundary conditions (10), results in the following sum-squared error (SSE),
which is to be minimized in the sense of the general linear least square principle
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SSE= �
x (i )��

(�,11(x (i ))+�,22(x (i )))+�1(x (i ))]2+ �
x (i )��

(�,11(x (i ))+�,22(x (i )))

−Re [�,2(x (i ))�,1(x (i ))−�,1(x (i ))�,12(x (i ))]}2

+ �
x (i )��

[(�1(x (i ))+�2(x (i ))]2+ [�1(x (i ))−�2(x (i ))]2}

+ �
x (i )��

[(�,1(x (i ))+u2o(x (i ))]2+ [�,2(x (i ))−u1o(x (i ))]2} (12)

where x (i ) is the ith collocation point, i= [1, n ] and n is the number of collocation points. In
the present problem some non-linear terms appear, i.e. �,2�,1 and �,1�,2, which require a
different numerical treatment. In general, the non-linear terms are estimated based on some
current approximate values of the variables leading to an iterative procedure which is as
follows:

1. Guess the initial velocity and vorticity fields for the first iteration (usually initialized to zero
in the present work);

2. Compute the non-linear terms (the convection term) using the current estimate of the
velocity and vorticity fields

�,2(x (i ))�,1(x (i ))−�,1(x (i ))�,2(x (i )), i= [1, n ]

3. Solve (12) in the sense of the general linear least square principle for the new estimate of
the velocity and vorticity fields;

4. Check for convergence. Convergence measure (CM) at the kth iteration is defined as
follows:

CM=
� �

n

i=1

(�k(x (i ))−�k−1(x (i )))2

�
n

i=1

(�k(x (i )))2

(13)

The solution procedure is terminated when CM� tol, where tol is a set tolerance;
5. If not yet converged, repeat from step 2;
6. If converged, stop.

Apart from the mesh-free property, another powerful feature of the present method is its
flexibility in the incorporation of extra boundary conditions. This is possible owing to the
general least square principle underlining the present formulation which allows non-square
system matrix. Furthermore, the algorithm presented above indicates that the non-linear terms
are estimated using the value of field variables obtained in the previous iteration and thus the
singular value decomposition of the system matrix needs to be done only once for all values
of Reynolds number and also for all subsequent iterations, provided that the centre distribu-
tion, the collocation point distribution and � are fixed, which is the case in the present method.
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2.4. Numerical examples

To investigate the abilities of the numerical method, two incompressible viscous flow problems
are simulated and the results obtained are presented in this section. All the numerical solutions
here for each Reynolds number are obtained starting from the condition of fluid at rest. In all
following examples, the set of collocation points chosen is also the set of RBF centres (n=m).
The tolerance for convergence criterion is set at tol=1.0e−4. A noteworthy feature of the
present work is that excellent results are obtained with the use of only uniformly distributed
collocation points at relatively low density in contrast with higher density and/or graded
meshes used by other methods reported in the literature.

2.4.1. A simple test problem—Poiseuille flow in a channel. A laminar flow between two parallel
plates is assumed to exist in the x1 direction and to be solved in a domain: 0�x1�1,
−1�x2�1 with the boundary conditions

u1=u0(1−x2
2), u2=0 on the lines x1=0 and x1=1 (14)

u1=0, u2=0 on the lines x2= −1 and x2=1 (15)

where u0 is the maximum velocity in the channel (Figure 2). In this case, the Reynolds
numbers, with U=u0 and L=2, associated with the flow becomes Re=2u0/�. Owing to
symmetry, only half of the fluid domain is considered and thus the boundary conditions used
in the streamfunction–vorticity formulation are

�,1=0, �,22=0 on the line x2=0 (16)

Figure 2. Poiseuille flow: note that the centre distribution is schematic only.
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�,1=0, �,2=u0(1−x2
2) on the lines x1=0 and x1=1 (17)

�=0, �,2=0 on the line x2=1 (18)

The steady solution is known analytically which is given by

u1e=u0(1−x2
2), u2e=0 (19)

Here the fluid flow inside the computational domain needs to be estimated numerically by the
present method. As mentioned above, the RBFN solution depends on the value of RBF width
�. Two studies of the parameter � are carried out using a uniform centre density of 11×11.
The first is to investigate the effect of � on the quality of the solution at Re=100. The value
of � is taken from 5.0 to 10.0 with an increment of 1.0. The method is convergent for all values
of � with a high accuracy as shown in Table I where the error norm Ne used here is the norm
of the error of the velocity field

Ne=
� �

n

i=1

[(u1(x (i ))−u1e(x (i )))2+ (u2(x (i ))−u2e(x (i )))2]

�
n

i=1

[(u1e(x (i )))2+ (u2e(x (i )))2]

(20)

The second study is to investigate the convergence radius of Reynolds number. Table II shows
that Re up to 100 000 can be easily achieved with �=8.0 (assuming that laminar flow can be
maintained). The velocity profile corresponding to this high Reynolds number was found to be
in excellent agreement with the analytical solution.

2.4.2. A benchmark problem—dri�en ca�ity flow. We turn our attention now to solve the
standard benchmark problem of a lid-driven unitary square cavity (Roache [21], Ghia et al.
[22]) whose top wall moves with a uniform velocity of 1.0 in its own plane as a model problem
for checking and evaluating the numerical method (Figure 3). Here the Reynolds number
Re=UL/�=1/�. Applying (11) to the present problem, the boundary conditions imply

Table I. Effect of � on the quality of the solution of Poiseuille flow: error
norm Ne at Re=100.

� 9.05.0 10.06.0 7.0 8.0

4.18e−7 1.97e−7Ne 1.59e−6 7.31e−7 3.16e−7 2.70e−7

Table II. Error norm Ne of the solution of Poiseuille flow at �=8.0 for some
Reynolds numbers.

1.0e3Re 1.0e4 1.0e51.0e0 1.0e1 1.0e2

1.10e−41.09e−51.06e−62.70e−72.73e−72.75e−7Ne
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Figure 3. Driven cavity flow: note that the centre distribution is schematic only.

�=0, �,2=0 on the line x2=0 (21)

�=0, �,1=0 on the line x1=1 (22)

�=0, �,2=1 on the line x2=1 (23)

�=0, �,1=0 on the line x1=0 (24)

It is observed that adding some extra boundary conditions on the vorticity � at the corners of
the cavity makes the solution more accurate. The extra boundary conditions used here are
�A=0, �B=0 (lower corners) and �C=�D (upper corners) (Figure 3). Three uniform centre
densities, namely 11×11, 17×17 and 21×21, are employed in the simulation for Re=100
and the results are in good agreement with the benchmark solutions provided by Ghia et al.
[22] (where a density of 129×129 was used) as shown in Tables III, IV and V and Figures 4
and 5. Table VI shows the total CPU times used to obtain a converged solution. Furthermore,
the present IRBFN results are compared with FVM, FEM and BDIM results on the same
density of 21×21 showing that the accuracy of the present method is very comparable with
the accuracy of the BDIM method of Ramsak and Skerget [23], which is far more accurate
than the FEM and FVM results (Table VII). The FVM and FEM results mentioned here are
extracted from the paper by Ramsak and Skerget [23], where the FVM results were produced
by the commercial code TASCflow (by Advanced Scientific Computing) and the FEM results
by the commercial code FIDAP (by Fluid Dynamics International). At higher Reynolds
number, a higher density of centres needs to be employed. Figures 6 and 7 show that IRBFN
results for Re=400 using the uniform density of 33×33 are very close to the benchmark
solution of Ghia et al. [22] using a density of 129×129. In conclusion, the present method
achieves very good solution with relatively low collocation densities.
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Table III. Driven cavity flow, Re=100: comparison of the minimum (alge-
braic) value of the velocity component u1 on the vertical centreline with the

benchmark solution (Bench.) obtained by Ghia et al. [22]a.

(u1)min�

IRBFN IRBFN IRBFN Bench. [22]
11×11 17×17 21×21 129×129

3.1 −0.220 −0.215 −0.216 −0.211
3.3 −0.219 −0.216 −0.216 −0.211

−0.218 −0.2163.5 −0.215 −0.211
3.7 −0.218 −0.215 −0.215 −0.211

−0.214 −0.213 −0.214 −0.2113.9
— −0.240 −0.2154.1 −0.211

a The combined effect of � and centre densities is illustrated. The range of acceptable
values of � is wider for higher centre densities.

Table IV. Driven cavity flow, Re=100: comparison of the minimum (alge-
braic) value of the velocity component u2 on the horizontal centreline with the

benchmark solution (Bench.) obtained by Ghia et al. [22]a.

� (u2)min

IRBFN IRBFN IRBFN Bench. [22]
11×11 17×17 21×21 129×129

−0.2733.1 −0.257 −0.256 −0.245
−0.272 −0.2603.3 −0.255 −0.245

3.5 −0.270 −0.257 −0.256 −0.245
−0.2693.7 −0.257 −0.255 −0.245
−0.262 −0.2583.9 −0.255 −0.245
— −0.2474.1 −0.254 −0.245

a The combined effect of � and centre densities is illustrated. The range of acceptable
values of � is wider for higher centre densities.

3. NATURAL CONVECTION IN A SQUARE SLOT

The disadvantage of the driven cavity problem is that the moving lid introduces singularities
at two of the corners. At the upper corners, the velocity is discontinuous and the vorticity is
unbounded. A more realistic benchmark problem was devised by de Vahl Davis et al. [24]
where the natural convection of a Boussinesq material in an enclosed cavity is induced by an
imposed wall temperature difference. In this problem, the geometric simplicity of the driven
cavity is maintained while the singularities are removed. Specifically, non-trivial motion is
induced by maintaining the temperatures of the vertical walls constant but different between
the two walls. The two horizontal walls are adiabatic and the direction of gravity is parallel to
the vertical walls. Although the governing equations now include buoyancy terms, this
problem is more realistic as it contains no singularities as in the case of the driven cavity
problem (Roache [21]). The problem definition is shown in Figure 8.
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Table V. Driven cavity flow, Re=100: comparison of the maximum (alge-
braic) value of the velocity component u2 on the horizontal centreline with the

benchmark solution (Bench.) obtained by Ghia et al. [22]a.

(u2)max�

IRBFN IRBFN IRBFN Bench. [22]
11×11 17×17 21×21 129×129

3.1 0.191 0.183 0.181 0.175
0.189 0.183 0.1813.3 0.175
0.188 0.1823.5 0.181 0.175
0.188 0.181 0.1813.7 0.175
0.183 0.1803.9 0.180 0.175
—4.1 0.202 0.181 0.175

a The combined effect of � and centre densities is illustrated. The range of acceptable
values of � is wider for higher centre densities.

Figure 4. Driven cavity flow, Re=100, �=3.9: comparison of the x1-component of the velocity profile
on the vertical centreline with the benchmark solution obtained by Ghia et al. [22] (see legend Ghia et

al. [22]).

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 65–86
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Figure 5. Driven cavity flow, Re=100, �=3.9: comparison of the x1-component of the velocity profile
on the horizontal centreline with the benchmark solution obtained by Ghia et al. [22] (see legend Ghia

et al. [22]).

Table VI. Driven cavity flow, Re=100: total CPU time used to obtain a
converged solutiona.

Density Matrix size CPU time (s)

571×588 11511×11
1291×130817×17 1182
1931×1948 376721×21

a The code is written in the MATLAB language (version 5.3R11 by The MathWorks,
Inc.), which was run on a 233-MHz Pentium II PC. Note that MATLAB language is
interpretative.

3.1. Go�erning equations

The equations governing the temperature and velocity behaviour can be cast in terms of
vorticity–stream function variables and non-dimensionalized (using a similar scheme as in
Leonard and Drummond [25]) by scaling the velocities by U=�gL2�T/� where � is the
coefficient of volumetric expansion, g the strength of the gravitational field and �T the
temperature difference between the two vertical walls. The cavity dimensions are scaled by L
and the temperatures are calculated with respect to the cold wall and scaled with �T. The

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 65–86
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Table VII. Driven cavity flow, Re=100: comparison of extreme velocity values computed
at �=3.9 with FEM, FVM and BDIM results using the centre density of 21×21, which

is the same for all four methodsa.

IRBFN FEM [23] FVM [23]Velocity BDIM [23] Bench. [22]
(density 129×129)

−0.214 −0.178 −0.191(u1)min −0.213 −0.211
Error (%) 1.42 15.64 9.48 0.95

−0.255(u2)min −0.217 −0.233 −0.259 −0.245
4.08 11.43 4.90Error (%) 5.71

(u2)max +0.180 +0.152 +0.160 +0.177 +0.175
2.86 13.14 8.57 1.14Error (%)

a The FEM results were obtained by Ramsak and Skerget [23] using FIDAP and the FVM results were
also obtained by Ramsak and Skerget [23] using TASCflow.

Figure 6. Driven cavity flow, Re=400, �=2.9: comparison of the x1-component of the velocity profile
on the vertical centreline using the centre density of 33×33 with the benchmark solution obtained by

Ghia et al. [22] (see legend Ghia et al. [22]).

vorticity � and streamfunction � are scaled with U/L and UL respectively. Applying the
standard Boussinesq approximation yields the following forms of the Poisson, vorticity
transport and energy equations:
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Figure 7. Driven cavity flow, Re=400, �=2.9: comparison of the x1-component of the velocity profile
on the horizontal centreline using the centre density of 33×33 with the benchmark solution obtained by

Ghia et al. [22] (see legend Ghia et al. [22]).

Figure 8. Natural convection flow in a square slot: note that the centre distribution is schematic only.
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�+ (�,11+�,22)=0, x�� (25)

(�,11+�,22)+T,1=Gr(�,2�,1−�,1�,2), x�� (26)

T,11+T,22=PrGr(�,2T,1−�,1T,2), x�� (27)

where the Grashof number is defined as Gr=UL/� while the Prandtl number is Pr=�/�
where � is the thermal diffusivity, T,i��T/�xi, T,ij��2T/�xi �xj and other symbols have been
defined earlier. Note that the Rayleigh number Ra=GrPr.

The present scheme of non-dimensionalization results in the dimensionless velocity that is
related to the one produced by the scheme used in the benchmark solution (de Vahl Davis [26])
according to

Ra(upresent)=ubench

The advantage of the present non-dimensionalization scheme is that material properties only
appear on the right-hand sides of the governing equations, which are estimated iteratively as
described in Section 3.3. Thus, the system matrix, which is formed based on the left hand sides
of the governing equations, needs to be singular value decomposed only once for all values of
Rayleigh number and also for all subsequent iterations, provided that the centre distribution,
the collocation point distribution and � are fixed, which is the case here.

3.2. Boundary conditions

The boundary conditions are as follows:

�=0, �,2=0, T,2=TW,2=0 on the line x2=0 (28)

�=0, �,1=0, T=TW=0 on the line x1=1 (29)

�=0, �,2=0, T,2=TW,2=0 on the line x2=1 (30)

�=0, �,1=0, T=TW=1 on the line x1=0 (31)

3.3. Numerical formulation based on RBFNs

In a similar manner as explained in Section 2.3, the RBFNs for the present problem are
designed based on the following SSE, derived from the governing equations (25)– (27) together
with boundary conditions (28)– (31):

SSE= �
x (i )��

[(�,11(x (i ))+�,22(x (i )))+�1(x (i ))]2

+ �
x (i )��

{(�,11(x (i ))+�,22(x (i )))+T,1(x (i ))−Gr [�,2(x (i ))�,1(x (i ))−�,1(x (i ))�,2(x (i ))]}2
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Table VIII. Natural convection in a square slot, Ra=1.0e3: effect of � on the
IRBFN result using the centre density of 11×11a.

� 4.5 5.0 5.5 6.0 6.5 7.0 Bench. [26]

3.659 3.659 3.654(u1)max 3.653 3.657 3.656 3.649
0.813 0.813 0.814 0.814x2 0.814 0.814 0.813

(u2)max 3.707 3.706 3.700 3.699 3.704 3.706 3.697
0.178 0.178x1 0.178 0.178 0.178 0.178 0.178

1.119 1.119 1.119 1.118Nu0 1.118 1.118 1.117
1.118Nu 1.118 1.118 1.118 1.118 1.118 1.118

a The benchmark solution (Bench.) by de Vahl Davis [26] is also shown.

+ �
x (i )��

{(T,11(x (i ))+T,22(x (i )))−PrGr [�,2(x (i ))T,1(x (i ))−�,1(x (i ))T,2(x (i ))]}2

+ �
x (i )��

{[(�1(x (i ))−�2(x (i ))]2+ [�1(x (i ))−�2(x (i ))]2+ [T1(x (i ))−T2(x (i ))]2}

+ �
x (i )��

{[(�(x (i ))]2+ [�,n(x (i ))−�W(x (i ))]2}+ �
x (i )��

[T(x (i ))−TW(x (i ))]2

+ �
x (i )��

[T,n(x (i ))−TW(x (i ))]2 (32)

where �=�1��2, �1 and �2 are the Dirichlet and Neumann boundaries respectively for the
temperature T. Typically Ti denotes the temperature T obtained symbolically via T,ii in the
manner explained previously in Section 2.3. Here the non-linear terms �,2�,1, �,1�,2, �,2T,1,
�,1T,2 are treated iteratively in the same way as described above in Section 2.3.

3.4. Numerical results

In the present problem the convergence criterion is set at tol=1.0e−6. Table VIII presents
the comparison of the present results at Ra=1.0e3 (the Prandtl number is 0.71) with the
benchmark solution obtained by de Vahl Davis [26], for the following variables:

1. Maximum horizontal velocity (u1)max on the vertical mid-plane and its location;
2. Maximum vertical velocity (u2)max on the horizontal mid-plane and its location;
3. Average Nusselt number value on the vertical boundary of the cavity at x1=0, which is

defined by

Nu0=Nu1�x 1=0

where

Nu1(x1)=
� 1

0

(u1T−T,1) dx2 (33)
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4. The average Nusselt number throughout the cavity, which is defined by

Nu=
� 1

0

Nu1 dx1 (34)

Integrals (33) and (34) are computed using Simpson’s rule. The agreement can be seen to be
very good for all values of 4.5���7. With increasing Rayleigh number the shape of the
solutions, e.g. T and � is more complicated with steep gradients. For the network to cope with
these fast-varying functions, the width � has to be decreased while the density has to be
increased. However, it is sufficient to demonstrate the good accuracy of the present method
with the use of a less than optimum value of �. Thus, the following combinations are chosen
to examine the quality of the solution as the Rayleigh number increases:

� Density 11×11 and �=4.5 for Rayleigh numbers 1.0e3, 1.0e4 and 1.0e5;
� Density 21×21 and �=3.5 for Rayleigh numbers 1.0e3, 1.0e4, 1.0e5 and 1.0e6;
� Density 27×27 and �=3 for Rayleigh numbers 1.0e6;

The present results are compared with the FDM results of de Vahl Davis [26] and the
benchmark solution (de Vahl Davis [26]) in Tables IX, X, XI and XII. The comparison shows
that for the same nodal density the present IRBFN results are closer to the benchmark results,
especially at higher Rayleigh numbers. This is particularly pleasing, as a conclusion may be
that the present IRBFN method possesses a higher rate of ‘h convergence’. Figures 9–11

Table IX. Natural convection in a square slot, Ra=1.0e3: comparison be-
tween IRBFN and FDM results (de Vahl Davis [26]) using the same centre

densitiesa

Bench. [26]IRBFN FDM [26] IRBFN FDM [26]

Density 21×2111×11

� — —4.5 — 3.5

3.5893.6513.427 3.6493.659(u1)max

0.05 1.640.27 6.08Error (%)
x2 0.813 0.801 0.813 0.811 0.813

0.25Error (%) 0.001.480.00

(u2)max 3.707 3.449 3.699 3.6973.629
0.05 1.840.27Error (%) 6.71
0.178 0.181 0.1780.178 0.193x1

1.698.43 0.00Error (%) 0.00

1.1171.105 1.1131.1181.119Nu0

1.070.18Error (%) 0.09 0.36
Nu 1.1181.118 1.096 1.118 1.111
Error (%) 0.630.00 1.97 0.00

a The benchmark solution (Bench.) by de Vahl Davis [26] is also shown.
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Table X. Natural convection in a square slot, Ra=1.0e4: comparison between
IRBFN and FDM results (de Vahl Davis [26]) using the same centre densitiesa.

IRBFN FDM [26] IRBFN FDM [26] Bench. [26]

11×11 21×21Density

4.5 — 3.5 — —�

16.206 16.243 16.195(u1)max 16.189 16.178
Error (%) 0.17 0.40 0.11 0.07
x2 0.824 0.808 0.823 0.820 0.823

0.12 1.82 0.00Error (%) 0.36

(u2)max 19.639 18.005 19.642 19.197 19.617
0.11 8.22 0.13Error (%) 2.14
0.119 0.139 0.119 0.125x1 0.119
0.00 16.81 0.00Error (%) 5.04

2.271 2.307 2.248 2.255 2.238Nu0

1.47 3.08 0.45Error (%) 0.76
2.244 2.171 2.246 2.212 2.243Nu
0.04 3.21 0.13 1.38Error (%)

a The benchmark solution (Bench.) by de Vahl Davis [26] is also shown.

Table XI. Natural convection in a square slot, Ra=1.0e5: comparison be-
tween IRBFN and FDM results (de Vahl Davis [26]) using the same centre

densitiesa.

IRBFN FDM [26] IRBFN FDM [26] Bench. [26]

11×11 21×21Density

4.5 — 3.5 —� —

33.961 40.90 34.790 36.46 34.73(u1)max

2.21 17.77 0.17Error (%) 4.98
x2 0.850 0.846 0.855 0.854 0.855
Error (%) 0.58 1.05 0.00 0.12

67.533 59.71 68.694(u2)max 62.79 68.59
Error (%) 1.54 12.95 0.15 8.46

0.067 0.083 0.066x1 0.075 0.066
1.52 25.76 0.00 13.64Error (%)

4.773 4.767 4.583Nu0 4.716 4.509
5.85 5.72 1.64 4.59Error (%)
4.488 4.446 4.525Nu 4.454 4.519
0.69 1.62 0.13 1.44Error (%)

a The benchmark solution (Bench.) by de Vahl Davis [26] is also shown.

display the corresponding distribution of temperature, velocity vectors and vorticity obtained
by the present IRBFN method for the Rayleigh number Ra=1.0e6. The plots are in good
agreement with the benchmark results.
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Table XII. Natural convection in a square slot, Ra=1.0e6: comparison
between IRBFN and FDM results (de Vahl Davis [26]) using the centre density

of 21×21a.

FDM [26] IRBFN Bench. [26]IRBFN

21×21 27×27Density

3.0 —� 3.5 —

64.65 64.6364.31(u1)max 79.27
Error (%) 22.65 0.030.50

0.862x2 0.850 0.8500.851
0.001.41Error (%) 0.12

195.44(u2)max 220.29 219.36218.93
0.4210.90Error (%) 0.20

0.045x1 0.037 0.0380.037
18.42Error (%) 2.632.63

9.273 8.8179.442 9.502Nu0

5.17Error (%) 7.09 7.77
8.798 8.8009.0278.694Nu
0.02Error (%) 1.20 2.58

a The IRBFN result of the density 27×27 and the benchmark solution (Bench.) by de
Vahl Davis [26] are also shown.

Figure 9. Natural convection in a square slot, Ra=1.0e6, �=3.0: temperature held obtained using the
centre density of 27×27.
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Figure 10. Natural convection in a square slot, Ra=1.0e6, �=3.0: velocity vector field obtained using
the centre density of 27×27.

Figure 11. Natural convection in a square slot, Ra=1.0e6, �=3.0: vorticity field obtained using the
centre density of 27×27.
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4. CONCLUDING REMARKS

A new mesh-free numerical method for Navier–Stokes equations based on the concept of an
IRBFN is developed, implemented and verified with a series of test problems. It is exciting that
the method produces a good quality solution using only relatively low collocation densities and
requires a minimal amount of effort to implement. In general, the most difficult step in using
the RBFN-based methods is how to choose the optimum value of RBF widths. It is shown
here that the present IRBFN method works very well with a very simple means of determining
the RBF width according to the relation a (i )=�d (i ), where d (i ) is simply the distance from the
centre ith to its nearest neighbour and a single � value reasonably chosen as shown in example
problems. Although the present IRBFN method is quite tolerant of the variation of � about
a mean value in a given problem, a universal method of determining the RBF width for an
arbitrary problem is still elusive. Fortunately, our cumulative experience so far indicates that
� is in the range 1���10, which is not too wide. A disadvantage of the present method is
that the system matrix is dense. However, it is feasible that this disadvantage can be overcome
by domain decomposition and parallelization which are topics currently under investigation.
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